Photosynthesis Notes Outline

I. The Importance of Food

- A. Food provides living things with the:
- B. Food serves as a source of:
- C. Food serves as a source of:

II. Autotrophs and Heterotrophs

A. All life on Earth depends on the ______ through the ecosystem. The source of this energy is the _____.

B. Autotrophs

- 1. Autotrophs are organisms that:
- 2. These organisms use the ______ from the sun to produce food in the form of ______.
- 3. This includes:
- C. Heterotrophs
 - 1. These are organisms that:
 - 2. Examples are:
 - 3. Heterotrophs must consume food. Heterotrophs eat plants or eat other animals that eat plants.
- D. Energy enters the ecosystem in the form of ______. Plants use the sun's energy to make ______. The sun's energy is stored in the molecule of glucose. The energy moves up the food chain when a consumer eats the plant.
- E. Photosynthesis is converting ______ from the sun into ______ in the form of glucose.

III. Chemical Energy and ATP

- A. Inside living cells, energy can be stored in chemical compounds.
- B. One of the principal chemical compounds that cells use to store and release energy is: 1)
 - 2)
 - -)
 - 3)
 - 4)

D. How ADP becomes ATP:

- 1. ADP is a compound that looks almost like ATP. The difference is that:
- 2. When a cell has energy available, it can store small amounts of it by:

____·

3. Adding a phosphate to _____ forms a molecule of _____. The addition of the third phosphate

4.	When a cell needs energy, the third phosphate	e will be	. This releases
5.	ATP has enough stored energy to power a variety of cellular activities such as: a) c)		
	b)	d)	
6.	The ATP molecule is the	of all living	g cells.
7.	In a cell, ATP is used continuously and must be regenerated continuously. In a working muscle		

IV. Photosynthesis

- A. An Overview
 - 1. In photosynthesis, plants use the energy of the sun to convert ______ into high-energy _____ molecules.
 - 2. ______ is given off as a waste product.

cell, 10 million ATP are consumed and regenerated per sec.

3. Life on earth is dependent on photosynthesis for ______.

- B. The Photosynthesis Equation
 - 1.
 - 2. Photosynthesis uses the energy of sunlight to convert water and carbon dioxide into high-energy sugars (glucose) and oxygen.
 - 3. The carbon dioxide is:
 - 4. The water is:

V. Chlorophyll and Other Pigments

- 1. Pigment:
- 2. Plants absorb the sun's energy with ______.
- 3. Chloroplasts:
- 4. Chromoplasts:
- 5. The colors of the visible spectrum are:
- 6. Different pigments absorb light of different wavelengths, and the wavelengths that are absorbed disappear.

The colors we see are the wavelengths of light that are being ______ by a pigment instead of being absorbed.

- 7. Chlorophyll is able to absorb all of the colors of the spectrum except ______. Chlorophyll reflects green light; therefore chlorophyll appears green to our eye.
- 8. There are two main kinds of chlorophyll:

b)

9. When chlorophyll absorbs light, energy is transferred directly to electrons in the chlorophyll molecule. This raises the energy level of these electrons. These high-energy electrons make photosynthesis work.

VI. Photosynthetic Membranes

- A. Leaf Structure
 - 1. Leaves are the major organs of ______. There are about half a million chloroplasts per square millimeter of leaf surface.
 - 2. Leaf Structure: Label the parts of the leaf in the drawing below.

Cuticle:

Mesophyll:

1)

2)

3)

4)

a)

Stomata: 1)
2)
3)
4)
5)
6)
Vascular Bundles (Veins): 1)
2)
3)

B. The Structure of the Chloroplast

- 1. It has a double ______ separated by a space between the two membranes.
- 2. The _____, in the interior of the chloroplasts, make a third membrane system.
- 3. Big stacks of thylakoids are called ______.
- 4. Thylakoids contain ______.
- 5. Surrounding the thylakoids is a dense solution called the _____.

C. The Thylakoids

- 1. Thylakoid: the structural unit of photosynthesis.
- 2. The thylakoids take the form of flattened sacs or vesicles.
- 3. ______are built into the thylakoid membrane. These chlorophyll molecules capture ______.
- D. Inside the Chloroplast

 - takes place inside the chloroplasts.
 Chlorophylls and other pigments are clustered together and embedded in the thylakoid membrane.
 - 3. These clusters of pigments are called ______. These are the ______ of the chloroplast.

VII. Electron Carriers

- A. When sunlight hits the molecules of chlorophyll, the ______ in the chlorophyll molecules become very ______. Excited electrons are electrons that have:
- B. These high-energy electrons need a _____. Cells use electron carriers to transport ______ from chlorophyll to other molecules.
- D. One of these electron carriers is known as _____.

NADP⁺ accepts and holds:

This converts ______ into _____.

E. NADPH will carry these high-energy electrons to chemical reactions elsewhere in the chloroplast.

F. These high-energy electrons will be used to build ______.

VIII. The Stages of Photosynthesis - An overview

- A. Photosynthesis takes place in two stages:
 - 1. The Light Dependent Reaction
 - a) The light dependent reactions takes place within the ______.
 - 2. The Light Independent Reaction
 - a) Also called the dark reaction.
 - b) Also called the Calvin cycle.
 - c) The dark reaction takes place in the:
- B. Overview: Label this diagram.

IX. The Light Dependent Reactions – The Light Reaction – A Look at the Photosystems

A. First, let's label each photosystem. There are two photosystems:

Photosystem:

- B. Pigments in photosystem II absorb _____. This light energy is absorbed by chlorophyll's ______, increasing their energy level. These high-energy electrons are passed to the ______.
- C. The electrons that were _____ must now be _____.

_____ in the thylakoid membrane break apart _____ molecules into:

These electrons replace the high-energy electrons that chlorophyll has lost to the electron transport chain. The ______ is considered a waste product and is released into the _____.

This splitting apart of water molecules is responsible for nearly all of the oxygen in our atmosphere. The hydrogen ions from the water are released inside the thylakoid.

D. The high-energy electrons move through the electron transport chain from:

As the electrons are passed down the electron transport chain, protein molecules use the energy from these electrons to create _____.

E. The ______ absorb energy from the sun and use it to re-energize the electrons.

The electron carrier ______ picks up these high-energy electrons, along with a _____ to form _____.

- F. This is a complicated process so let's not lose sight of the big picture:
 - 1. The purpose of the light dependent reactions is to:
 - 2. Water molecules are continuously _____. The _____ will accumulate inside the thylakoid. The ______ is released to the atmosphere.
 - This takes place along the _____ membrane.
 The light dependent reactions pass electrons continuously from _____ to _____.

 - 5. The two photosystems work together using the ______ from the sun to produce:

X. The Light Dependent Reactions – The Light Reaction – A More Detailed View

Please Note: Each numbered statement below (1 - 22) corresponds to the same number in the drawing above.

- 1. These are the membranes composing the ______. Thylakoids are found inside the ______. Big stacks of thylakoids are called ______.
- 2.
- 3. Photosystem II: This is a collection of ______ molecules that absorb the ______ from the sun.
- 4. ______ strikes the surface of the leaf. The chlorophyll molecules absorb the energy from the sun.
- 5. This light energy increases the _____ level of the _____ in chlorophyll molecules. These high-energy electrons:
- 6. The electrons that were _____ must now be _____. Enzymes in the thylakoid membrane break apart _____ molecules into:
- 7. These ______ replace the high-energy electrons that chlorophyll has lost to the electron transport chain.
- 8.

10. The high-energy electrons move through the electron transport chain from:

As the electrons are passed down the electron transport chain, protein molecules use the energy from these electrons to create _____.

- 11. The chlorophyll molecules in photosystem I absorb ______ and use it to re-energize the electrons.
- 12. These electrons are passed down a second ______ to the electron acceptor called ______.
- 13. _____ joins with one hydrogen atom and two electrons to form.....
- 14.

9.

- 15. This area of the chloroplast is called the ______. It is a dense liquid area of the chloroplast.
- 16. ______flow from an area of ______concentration inside the ______ to an area of ______concentration in the ______. The hydrogen is flowing through a protein enzyme called ______. As the hydrogen flows through ATP synthase, the protein:
- 17. As this protein rotates, ATP synthase binds a ______ to _____ to form
- 18.
- 19.
- 20. Hydrogen ions are pumped back inside the ______ to keep the concentration of hydrogen very ______ inside the thylakoid.

21.

22.

The purpose of the light reaction is to produce the high-energy compounds of ATP and NADPH which will be used in the light independent reactions.

XI. The Calvin Cycle

- A. This set of reactions may be called by several names:
- B. This occurs in the _____ of the chloroplast.
- C. The purpose of this stage is to take ______ and the high-energy products from the light reaction (______) and make ______ molecules.

D. Steps of the Calvin Cycle

- 1. ______ is obtained from the atmosphere. It enters the leaf through the pores in the leaf called ______.
- 2. The carbon from ______ is combined with a 5-carbon sugar called ______. This is referred to as ______.
- 3. This forms a very ______ that immediately breaks apart into _____ molecules of ______, a three-carbon compound.
- 4. A series of reactions involving ______ converts a molecule of _____ into _____ into _____. PGAL is also a three-carbon compound.

- 5. There are 2 possibilities for the PGAL: a)
 - b)

XII. The Water Loss Dilemma

1. The number one problem that land plants face is ______.

- 2. Plants must open their ______ to let in the ______ that is required for photosynthesis. But anytime the stomata are open, there will be excessive ______ loss through the stomata.
- 3. There will have to be trade-offs or compromises between photosynthesis and the prevention of excessive water loss.
- 4. On a hot, dry day, most plants will close their stomata to conserve water. But with the stomata closed, photosynthesis will drastically slow down since no carbon dioxide can enter the leaf.

XIII. Factors Affecting the Rate of Photosynthesis

- A. Water
 - 1. Water is required in the ______ reactions. Water is obtained from the ground by the ______.
 - 2. A shortage of water in the ground can slow or stop photosynthesis.
 - 3. In order to prevent water loss from the plant, plants are covered with a waxy ______.
- B. Temperature
 - 1. The process of photosynthesis depends upon the action of enzymes.
 - 2. Enzyme work the best at temperatures between ______.
 - 3. Temperatures above or below this range may damage the enzymes and prevent them from functioning.
 - 4. At very low or very high temperatures, photosynthesis may stop entirely.
- C. Light Intensity
 - 1. Increasing the light intensity increases the rate of photosynthesis.

To sum it all up: The energy from the sun has been stored as chemical energy in glucose.

XIV. The Relationship Between Photosynthesis and Respiration

- A. Energy flows into an ecosystem as ________
 and leaves as _______. Energy is not _______. Energy follows a one-way path through our ecosystem.
- B. However, the ______ essential to life are recycled.
- C. Photosynthesis converts ______ energy from the sun into ______ energy, which is stored in carbohydrates and other organic compounds.
- D. Photosynthesis generates the ______ and _____ used by the mitochondria of eukaryotes as fuel for ______.
- E. Cellular respiration breaks down ______ into simpler substances and releases the stored ______.

- F. Some of this energy is used to make ______ from ADP. Some of this energy is lost as
- G. The waste products of respiration, _____, are the raw materials for
- H. IMPORTANT NOTE: While only green plants carry out _____, ALL living things carry out _____.

XV. Overview of Respiration

A. The Definition of Respiration

_____.

- 1. Cellular respiration is the process that:
- 2. It is the process of converting:
- B. Equation for Respiration
- C. There is much _______ stored in this molecule of ______. This energy must be released in ______ steps. If all the energy from glucose were released at once, most of it would be lost as ______. The energy stored in glucose will be released bit by bit and this energy will be used to produce _____. The energy cannot be released

from the glucose all at once. It would be the equivalent of the gas tank in your car exploding in one single reaction, rather than in the small controlled combustions that drive your car.

- D. There are two types of respiration:
 - 1.
 - 2.
- E. Respiration takes place in three main stages
 - 1.
 - 2.
 - 3.
- F. Glycolysis occurs in the ______, but the Krebs cycle, and electron transport chain occurs in the ______.

XVI. Glycolysis

- A. Definition:
- B. Steps in Glycolysis

- 1. The energy of ______ is used to convert ______ into two molecules of ______.
- 2. The two molecules of ______ will be ______ to produce two molecules of ______. Pyruvic acid is a ______ compound.
- 3. As the PGAL is oxidized, two molecules of _____ will be _____ to form two molecules of _____. These will be used in the _____.

4. The oxidation of PGAL also results in the production of ______.

- 5. The pyruvic acid may:
 - a)
 - b)
 - c) We will discuss this further in the next section.
- C. ATP Production:
 - 1. Even though cellular respiration is an energy ______ process, the cell must _____ a small amount of energy to get the reaction going.
 - 2. ______ are consumed at the beginning, but ______ molecules of ATP are produced by the end of glycolysis.
 - 3. Glycolysis has a gain of ______.

D. NADH Production:

- During this reaction, ______ are removed from each ______.
 These electrons are passed to the electron acceptor _____.
- 2. NAD+ in respiration is similar to NADP+ in photosynthesis.
- 3. Each NAD⁺ accepts a pair of electrons to form ______.
- 4. This NADH ______ until they can be transferred to other molecules.
- 5. NAD+ helps to pass the energy from glucose to other pathways in the cells.
- E. Advantages and Disadvantages of Glycolysis
 - 1. Glycolysis only produces a gain of ______ per molecule of ______, but the process is so fast that 1000's of ATP are produced in just a few milliseconds.

- 2. Another advantage is that glycolysis does not require ______. Energy can be produced for the cell even if no oxygen is present.
- 3. Disadvantage: If the cell relied only on glycolysis for ATP production, the cell would quickly run out of ______ to accept the ______. Without NAD+, the cell cannot keep glycolysis going and ______ would stop. To keep glycolysis going, the NADH must deliver their high-energy cargo of electrons to another pathway, and then return to glycolysis to be used again.

XVII. The Fate of Pyruvic Acid – What happens to it?

A. There are _____ possibilities for the path that ______ will now take. It depends on whether or not ______ is present.

XVIII. Overview of Aerobic Respiration

- A. Aerobic respiration has two major stages:
- B. Krebs cycle:

1.

 The ______ that is removed from pyruvic acid will be accepted by ______ to form _____.

- 3. There will be:
- C. The Electron Transport Chain
 - 1. The ______ that has been produced during ______ and the ______ will be used to produce _____.
 - 2. Most of the ATP produced during aerobic respiration is produced by:
- D. In prokaryotic cells, the Krebs cycle and the electron transport chain occur in the ______ and along special structures of the ______.

In eukaryotic cells, these reactions occur inside the ______. If oxygen is available, the pyruvic acid that was produced during glycolysis will enter the mitochondria for aerobic respiration.

E. Structure of the Mitochondria

It is surrounded by a double membrane.

- 2.
- 4.

F. The ______ is the space inside the inner membrane. It contains:

G. The inner membrane has folds and loops called ______.

The cristae:

- H. The Krebs cycle occurs in the ______ and the electron transport chain occurs along the ______.
- I. At the end of glycolysis, about 90% of the chemical energy that was available in the ______ molecule is still unused. This energy is locked in:

J. As the pyruvic acid enters the mitochondria, the following reaction occurs:

- 1. Pyruvic acid enters the mitochondria.
- The 3-C ______ is converted to 2-C _____. This is accomplished by removing a molecule of ______ from each molecule of pyruvic acid. The carbon dioxide is _____.
- 3. For each pyruvic acid that is converted to ______, one molecule of ______ is converted to ______.
- 4. ______ attaches to the acetate to form ______. The acetyl-CoA will be used in the ______-.
- 5. This reaction is often referred to as "_____".It is the bridge betweena)
 - b)
 - c)

XIX. The Krebs Cycle

- A. The Krebs cycle is a biochemical pathway that uses the ______ molecules from the ______ to produce ______.
- B. This set of reactions occurs in the _____ of the _____.

- C. The Steps of the Krebs cycle:

 - 2. The 6-C ______ releases a molecule of ______ to form a 5-C compound. As citric acid is oxidized, the ______ is transferred to ______ to form _____.
 - 3. The 5-C compound releases ______ and a ______ atom forming a 4-C compound. ______ is reduced to form ______ and one molecule of ______ is produced.
 - 4. This 4-C compound releases a ______ to form another 4-C compound. This time, the hydrogen is used to reduce _____ to _____.
 - 5. In the last step, the 4-C ______ is regenerated which keeps the ______ going. The hydrogen that is released is used to form a final ______.

D. Summary of the Krebs cycle

1. ______ are electron carriers very similar to the NADP+ that was used in photosynthesis. NAD+ and FAD will deliver the ______ of hydrogen to the ______.

- 2. What is the total amount of CO₂, ATP, NADH, and FADH₂ that is produced during one turn of the Krebs cycle?
- a) b) c) d) The above totals are for _____ 3. Now remember that during glycolysis, ______ was broken down into two molecules of ______. Therefore, one glucose molecule causes ______ turns of the ______. What is the total amount of CO₂, ATP, NADH, and FADH₂ that is produced per molecule of glucose in the Krebs cycle? a) b) c) d) 4. What happens to each of these products? a) b) c)
- 5. Most of the energy contained in the original ______ molecule still has not been transferred to ______. This transfer of energy will occur in the next step, the

XX. The Electron Transport Chain

- A. The electron transport chain consists of a series of ______ that are embedded in the ______ of the mitochondria in eukaryotic cells. In prokaryotic cells, the electron transport chain lies along the ______.
- B. In this last stage of aerobic respiration, NADH and FADH₂ will:
- C. Electron Transport

- What is the total number of NADH and FADH₂ that has been produced so far?
 a)
 - b)
 - c) The purpose of NADH and FADH₂ is to:
 - d) The electron transport chain uses these high-energy electrons to convert

D. Steps of the Electron Transport Chain

1. The high-energy electrons from ______ are passed along the electron transport chain, from one protein to the next.

- 2. At the end of the electron transport chain, the ______ will be combined with ______ to form _____.
- 3. Oxygen is the final ______. Oxygen is essential for getting rid of
- 4. As these electrons move down the electron transport chain, they release _____. This energy is used to pump ______ across the membrane from the ______ to the ______. The hydrogen protons are pumped ______ the concentration gradient from an area of ______ concentration in the matrix to an area of ______ concentration in the inner membrane space.
- 5. A concentration ______ has now been established. There is a high concentration of hydrogen in the ______ and a low concentration in the
- 7. As the hydrogen flows through ATP synthase, it ______. Each time it rotates, a ______ is attached to ______ to form _____.

8. Recap of Electron Transport:

- a) This system couples the movement of ______ with the production of ______.
- b) As the high-energy electrons move down the electron transport chain, they release
- c) This energy is used to move ______ across the membrane.
- d) These ions then rush back across the membrane, producing:

XXI. ATP Accounting

- A. Let's summarize what has happened prior to the electron transport chain:
 - 1. Glycolysis \rightarrow
 - 2. Bridge reaction \rightarrow
 - 3. Krebs cycle \rightarrow

В.	Each NADH has enough energy to produce Each FADH ₂ has enough energy to produce		
C.	10 NADH =		
	$2 \text{ FADH}_2 =$		
D.	Glycolysis →		
	Krebs cycle \rightarrow		
	Electron Transport Chain \rightarrow		
E.	E. One molecule of glucose has produced		
F.	F. Only about 40% of the energy contained in the glucose molecule has been converted to The remaining 60% is given off as		
XXII.	Fermentation		
A.	Fermentation occurs when		
B.	Since no oxygen is required, fermentation is an process.		
C.	The anaerobic pathways are not very efficient in transferring energy from to Fermentation will yield only a gain of per molecule of		
D.	There are two main types of fermentation: 1.		
	2.		
E. Alcoholic Fermentation			
	1 perform alcoholic fermentation. Yeasts convert into		
	and alcohol.		
	2.		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		

- 3. Yeasts are used in this way in both the ______ and the ______ industries. The alcohol makes alcoholic beverages. The ______ that is given off causes bread dough to ______. Small bubbles are formed in the dough, making the bread rise. (The alcohol evaporates during the baking process.)
- F. Lactic Acid Fermentation

3. It took over a ______ years for the first ______ organisms to appear on Earth.

- 4. These photosynthetic organisms began to fill the atmosphere with ______, which stimulated the evolution of organisms that use ______ respiration.
- 5. The anaerobic pathways provide enough energy for only

_____.

6. Larger organisms have much greater _______that cannot be satisfied by ______ respiration alone. Larger organisms rely on the more energy efficient pathways of ______ respiration.

XXIII. Comparing Photosynthesis to Respiration

	Photosynthesis	Respiration
Function		
Location		
Reactants		
Products		
Equation		